1. 수직선
(1) 수직선 : 직선 위에 기준이 되는 점 O를 잡아 그 점을 수 0으로 대응시키고, 그 점의 오른쪽에 양수를 왼쪽에 음수를 차례로 대응시켜서 만든 직선이다. 이때 기준이 되는 점 O를 원점이라 한다.
(2) 수직선 위에 수 나타내기
① 직선을 그린다.
② 직선 위에 기준이 되는 점 O를 잡아 수 0을 대응시킨다.
③ 원점의 좌우에 일정한 간격으로 점을 찍는다.
④ 0의 오른쪽 점에는 차례로 양수를 왼쪽점에는 차례로 음수를 대응시킨다.
2. 절댓값
(1) 절댓값 : 수직선 위에서 원점으로부터 어떤 수에 대응하는 점까지의 거리, 기호 | | ( |+3|=3, |-4|=4)
(2) 절댓값의 성질
① 어떤 수의 절댓값을 그 수에서 +, - 부호를 떼어낸 수와 같다.
② 절댓값이 a(a>0)인 수는 +a, -a의 2개이다.
③ 0의 절댓값은 0이다. |0|=0
3. 수의 대소관계
(1) 수의 대소관계
① 양수는 0보다 크고 음수는 0보다 작다.
② 양수는 음수보다 크다
③ 양수끼리는 절댓값이 큰 수가 크다.
④ 음수끼리는 절댓값이 큰 수가 작다.
(2) 부등호의 사용
① a > b : a는 b보다 크다(a는 b 초과이다)
② a < b : a는 b보다 작다(a는 b 미만이다)
③ a ≥ b : a는 b보다 크거나 같다. a는 b보다 작지 않다.(a는 b이상이다)
④ a ≤ b : a는 b보다 작거나 같다. a는 b보다 크지 않다.(a는 b이하이다)
Test 올립니다 활용해보세요 공감 부탁드립니다.
'중등수학 > 중1' 카테고리의 다른 글
음수의 유래 (0) | 2024.04.15 |
---|---|
정수와 유리수의 덧셈, 뺄셈, 곱셈, 나눗셈, 혼합계산 (0) | 2023.11.23 |
양수, 음수, 정수, 유리수 (0) | 2023.11.20 |
공약수, 최대공약수, 공배수, 최소공배수,서로소, 소인수분해 (0) | 2023.11.19 |
중등 교과 과정 목차 (0) | 2023.10.16 |